+2(x, 0) -> x
+2(0, x) -> x
+2(s1(x), s1(y)) -> s1(s1(+2(x, y)))
*2(x, 0) -> 0
*2(0, x) -> 0
*2(s1(x), s1(y)) -> s1(+2(*2(x, y), +2(x, y)))
sum1(nil) -> 0
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> s1(0)
prod1(cons2(x, l)) -> *2(x, prod1(l))
↳ QTRS
↳ DependencyPairsProof
+2(x, 0) -> x
+2(0, x) -> x
+2(s1(x), s1(y)) -> s1(s1(+2(x, y)))
*2(x, 0) -> 0
*2(0, x) -> 0
*2(s1(x), s1(y)) -> s1(+2(*2(x, y), +2(x, y)))
sum1(nil) -> 0
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> s1(0)
prod1(cons2(x, l)) -> *2(x, prod1(l))
SUM1(cons2(x, l)) -> +12(x, sum1(l))
+12(s1(x), s1(y)) -> +12(x, y)
PROD1(cons2(x, l)) -> *12(x, prod1(l))
PROD1(cons2(x, l)) -> PROD1(l)
*12(s1(x), s1(y)) -> +12(*2(x, y), +2(x, y))
*12(s1(x), s1(y)) -> +12(x, y)
*12(s1(x), s1(y)) -> *12(x, y)
SUM1(cons2(x, l)) -> SUM1(l)
+2(x, 0) -> x
+2(0, x) -> x
+2(s1(x), s1(y)) -> s1(s1(+2(x, y)))
*2(x, 0) -> 0
*2(0, x) -> 0
*2(s1(x), s1(y)) -> s1(+2(*2(x, y), +2(x, y)))
sum1(nil) -> 0
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> s1(0)
prod1(cons2(x, l)) -> *2(x, prod1(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
SUM1(cons2(x, l)) -> +12(x, sum1(l))
+12(s1(x), s1(y)) -> +12(x, y)
PROD1(cons2(x, l)) -> *12(x, prod1(l))
PROD1(cons2(x, l)) -> PROD1(l)
*12(s1(x), s1(y)) -> +12(*2(x, y), +2(x, y))
*12(s1(x), s1(y)) -> +12(x, y)
*12(s1(x), s1(y)) -> *12(x, y)
SUM1(cons2(x, l)) -> SUM1(l)
+2(x, 0) -> x
+2(0, x) -> x
+2(s1(x), s1(y)) -> s1(s1(+2(x, y)))
*2(x, 0) -> 0
*2(0, x) -> 0
*2(s1(x), s1(y)) -> s1(+2(*2(x, y), +2(x, y)))
sum1(nil) -> 0
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> s1(0)
prod1(cons2(x, l)) -> *2(x, prod1(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
+12(s1(x), s1(y)) -> +12(x, y)
+2(x, 0) -> x
+2(0, x) -> x
+2(s1(x), s1(y)) -> s1(s1(+2(x, y)))
*2(x, 0) -> 0
*2(0, x) -> 0
*2(s1(x), s1(y)) -> s1(+2(*2(x, y), +2(x, y)))
sum1(nil) -> 0
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> s1(0)
prod1(cons2(x, l)) -> *2(x, prod1(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(s1(x), s1(y)) -> +12(x, y)
POL(+12(x1, x2)) = x2
POL(s1(x1)) = 1 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
+2(x, 0) -> x
+2(0, x) -> x
+2(s1(x), s1(y)) -> s1(s1(+2(x, y)))
*2(x, 0) -> 0
*2(0, x) -> 0
*2(s1(x), s1(y)) -> s1(+2(*2(x, y), +2(x, y)))
sum1(nil) -> 0
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> s1(0)
prod1(cons2(x, l)) -> *2(x, prod1(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
SUM1(cons2(x, l)) -> SUM1(l)
+2(x, 0) -> x
+2(0, x) -> x
+2(s1(x), s1(y)) -> s1(s1(+2(x, y)))
*2(x, 0) -> 0
*2(0, x) -> 0
*2(s1(x), s1(y)) -> s1(+2(*2(x, y), +2(x, y)))
sum1(nil) -> 0
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> s1(0)
prod1(cons2(x, l)) -> *2(x, prod1(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SUM1(cons2(x, l)) -> SUM1(l)
POL(SUM1(x1)) = 2·x1
POL(cons2(x1, x2)) = 1 + 2·x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
+2(x, 0) -> x
+2(0, x) -> x
+2(s1(x), s1(y)) -> s1(s1(+2(x, y)))
*2(x, 0) -> 0
*2(0, x) -> 0
*2(s1(x), s1(y)) -> s1(+2(*2(x, y), +2(x, y)))
sum1(nil) -> 0
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> s1(0)
prod1(cons2(x, l)) -> *2(x, prod1(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
*12(s1(x), s1(y)) -> *12(x, y)
+2(x, 0) -> x
+2(0, x) -> x
+2(s1(x), s1(y)) -> s1(s1(+2(x, y)))
*2(x, 0) -> 0
*2(0, x) -> 0
*2(s1(x), s1(y)) -> s1(+2(*2(x, y), +2(x, y)))
sum1(nil) -> 0
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> s1(0)
prod1(cons2(x, l)) -> *2(x, prod1(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(s1(x), s1(y)) -> *12(x, y)
POL(*12(x1, x2)) = x2
POL(s1(x1)) = 1 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
+2(x, 0) -> x
+2(0, x) -> x
+2(s1(x), s1(y)) -> s1(s1(+2(x, y)))
*2(x, 0) -> 0
*2(0, x) -> 0
*2(s1(x), s1(y)) -> s1(+2(*2(x, y), +2(x, y)))
sum1(nil) -> 0
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> s1(0)
prod1(cons2(x, l)) -> *2(x, prod1(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
PROD1(cons2(x, l)) -> PROD1(l)
+2(x, 0) -> x
+2(0, x) -> x
+2(s1(x), s1(y)) -> s1(s1(+2(x, y)))
*2(x, 0) -> 0
*2(0, x) -> 0
*2(s1(x), s1(y)) -> s1(+2(*2(x, y), +2(x, y)))
sum1(nil) -> 0
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> s1(0)
prod1(cons2(x, l)) -> *2(x, prod1(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROD1(cons2(x, l)) -> PROD1(l)
POL(PROD1(x1)) = 2·x1
POL(cons2(x1, x2)) = 1 + 2·x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
+2(x, 0) -> x
+2(0, x) -> x
+2(s1(x), s1(y)) -> s1(s1(+2(x, y)))
*2(x, 0) -> 0
*2(0, x) -> 0
*2(s1(x), s1(y)) -> s1(+2(*2(x, y), +2(x, y)))
sum1(nil) -> 0
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> s1(0)
prod1(cons2(x, l)) -> *2(x, prod1(l))